A remote control for functional materials

Intense mid-infrared excitation has been demonstrated as a powerful tool for controlling the magnetic, ferroelectric and superconducting properties of complex materials. Nonlinear phononics is key to this end, as it displaces specific atoms away from their equilibrium positions to manipulate microscopic interactions. So far, this effect has been thought to occur only within the optically excited volume. Now researchers in Hamburg discovered that the polarization reversal in ferroelectric lithium niobate (LiNbO3) even occurs in areas well away from the direct light ‘hit’. The hitherto unknown phenomenon—called nonlocal nonlinear phononics—has been published in Nature Physics.


Click here for original story, A remote control for functional materials


Source: Phys.org