When a metal is stressed far below its yield strength at elevated temperatures, a process known as creep can occur. Creep, the time-dependent deformation of materials, is responsible for a great number of component failures at high temperatures. Scientists know that eliminating grain boundaries in materials is a useful way of resisting high-temperature creep in metals. However, a team of researchers has developed a different strategy for inhibiting creep by using stable grain boundary networks.
Click here for original story, New strategy to effectively prevent component failures in metals
Source: Phys.org