Machine learning helps determine success of advanced genome editing

A new tool to predict the chances of successfully inserting a gene-edited sequence of DNA into the genome of a cell, using a technique known as prime editing, has been developed by researchers at the Wellcome Sanger Institute. An evolution of CRISPR-Cas9 gene editing technology, prime editing has huge potential to treat genetic disease in humans, from cancer to cystic fibrosis. But thus far, the factors determining the success of edits are not well understood.


Click here for original story, Machine learning helps determine success of advanced genome editing


Source: Phys.org