Measuring Exoplanetary Magnetospheres with the Square Kilometer Array

Life on Earth would not be possible without food, water, light, a breathable atmosphere and surprisingly, a magnetic field. Without it, Earth, and its inhabitants would be subjected to the harmful radiation from space making life here, impossible. If we find exoplanets with similar magnetospheres then those worlds may well be habitable. The Square Kilometer Array (SKA) which is still under construction should be able to detect such magnetospheres from radio emissions giving us real insight into our exoplanet cousins. 

The magnetic field of Earth is the result of churning motion of liquid iron and nickel in the outer core. The resultant magnetic field has properties of a giant magnet with a north pole and a south pole and it extends from the core outward, enveloping the entire planet.  The presence of the field stops harmful solar radiation and cosmic particles. Magnetic fields are not static though and it is not uncommon for them to flip, as has happened to our own magnetic field. 

Since we have been hunting exoplanets (and to date, over 5,000 have been discovered) it has become clear that there are a good number of super sized gas gas giants. As our detection technology and methods improve, smaller, more Earth like planets are starting to be discovered. It is therefore not unreasonable to think that, among them, there may well be alien planets with magnetic fields making them, therefore good candidates for habitable environments. 

Artist impression of glory on exoplanet WASP-76b. Credit: ESA

Understanding exoplanet magnetic fields is in its infancy. So far, we have only explored magnetic fields around the planets in our Solar System. What we do know is that any planetary magnetic field emits radio signals due to the Electron Cyclotron Maser Instability mechanism. Sounds like something out of StarTrek or StarWars depending on your preference but either way, electromagnetic radiation is amplified by electrons that are trapped in the field. It is this amplified radiation that can be detected remotely IF we have a radio telescope with the capability. 

A recent paper authored by Fatemeh Bagheri and team from the University of Texas explores whether it might be possible to detect the emissions using the Square Kilometre Array. The concept of the SKA is a radio interferometer with components in Australia and Africa and its headquarters in the UK. The international array of radio telescopes that are joined together electronically to operate as one collecting area of a square kilometre. It affords the ability to study the radio sky with higher sensitivity and resolution than ever before and it’s this, that Bagheri and team are focusing their attention. 

Aerial image of the South African MeerKAT radio telescope, part of the Square Kilometer Array (SKA). Credit: SKA

Using NASA’s exoplanet archive data, they calculated the strength of radio signal from 80 confirmed planets. They took the planet’s radius, mass and orbital distance from the host star, along with the stars’ mass, radius and distance form us to estimate the signal from the magnetosphere. The results were promising and suggest that, according to their analysis exoplanets; Qatar-4 b, TOI-1278 b, and WASP-173 A b would indeed emit radio signals from their magnetosphere that the SKA could detect. Unfortunately we will have to wait until 2028 when SKA is operational but already, it seems researchers are lining up to use it and this piece of research in particular looks set not only to herald a greater understanding of exoplanets but also the possibility of life in the Universe. 

Source : Exploring Radio Emissions from Confirmed Exoplanets Using SKA

Source link