The topic of terrestrial water storage variations in California came up in several presentations, focusing on the see-saw swings between very wet and very dry years and the early impacts on groundwater recharge after the record-breaking snow accumulation during the 2022/2023 winter. The process of groundwater recharge – an important objective in the 2017 Earth Science Decadal Survey – is not well understood because of the challenges in observing infiltration of new water supply into the ground and the effects of rate of input, amount of input, and various aquifer characteristics. By combining observations of precipitation, snow water equivalent, surface water storage, ground surface deformation, and groundwater storage from G/G-FO, recharge behavior can be characterized in a natural experiment where source inputs are effectively not limited, but recharge capacity is limited. Results of studies shown during the meeting reveal that only a fraction of total available potential recharge can enter the aquifer, and that G/G-FO observations allow us to measure the effective aggregated recharge capacity and how it varies with several predictors. Another paper reported that subsurface water increases in California’s Sierra Nevada by 0.6 m (~2 ft) from October 2022 to June 2023, which represents 43% of the cumulative precipitation.