Partnering and fundraising for planetary defense
The Planetary Society’s members came together to raise over $65,000 in June and July for our planetary defense program. It’s through this program that we fund asteroid hunters, contribute to international coordination on asteroid research, educate the public and policymakers about the importance of planetary defense, and more. Thanks to your support, The Planetary Society will continue working hard to keep our planet safe from impacts.
As part of our overall planetary defense work, we partnered with Asteroid Day again this year to celebrate the international day of asteroid awareness. You can go to asteroidday.org to learn more about the global events that took place on June 30 this year.
New insights into asteroid properties: A STEP Grant update
One of the first recipients of The Planetary Society’s STEP (Science and Technology Empowered by the Public) Grant program was a project to better understand near-Earth asteroids. This year, that project achieved its main goals and scientific objectives.
In 2022, The Planetary Society awarded a $44,842 grant to a team from the University of Belgrade, Serbia, led by Professor Bojan Novaković, for their proposal “Demystifying Near-Earth Asteroids.” This project aimed to develop and apply a new method for determining the physical properties of asteroids with orbits that come close to Earth’s orbit (also called near-Earth asteroids, or NEAs). Although tens of thousands of NEAs have been found, we only know the physical properties of a small percentage — from solid rock asteroids to collections of boulders to fluff balls.
Over the course of their two-year project, Novaković’s team introduced an innovative tool named the Asteroid Thermal Inertia Analyzer (ASTERIA) to measure how well asteroids retain heat, giving insight into their composition and structure.
Unlike traditional thermo-physical modeling-based methods that involvecomplex calculations, ASTERIA simplifies the process using a random sampling approach to predict the thermal inertia based on how asteroids drift over time due to the Yarkovsky effect — a subtle force acting on rotating bodies in space caused by the emission of thermal photons. ASTERIA is especially useful for smaller asteroids, where traditional models struggle because they do not have enough data.
The project team tested ASTERIA on the well-studied asteroid Bennu and 10 other near-Earth asteroids. Their results were consistent with previous findings from other methods, validating the ASTERIA method while also proving it as a useful way of independently confirming findings from other techniques in the future.
One particular part of the project focused on the asteroid Didymos and its moonlet Dimorphos, which was the target of NASA’s DART mission. When the DART spacecraft intentionally impacted Dimorphos in September 2022, it proved an asteroid deflection technique and in doing so, turned Dimorphos into an “active asteroid,” ejecting debris that may have settled on both the moonlet and its host asteroid.