MESSENGER EARTH SWINGBY

NASA’s MESSENGER spacecraft, headed toward the first study of Mercury from orbit, swung by Earth on August 2, for a gravity assist that propelled it deeper into the inner solar system.

Mission operators at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md, said MESSENGER’s systems performed flawlessly. The spacecraft swooped around Earth, coming to a closest approach point of approximately 1,458 miles (2,347 kilometers) over central Mongolia at 3:13 p.m. EDT.

The spacecraft used the tug of Earth’s gravity to significantly change its trajectory. Its average orbit distance is nearly 18 million miles closer to the sun. The maneuver sent it toward Venus for another gravity-assist flyby next year.

Launched Aug. 3, 2004, from Cape Canaveral Air Force Station, Fla., the solar-powered spacecraft is approximately 581 million miles (930 million kilometers) into a 4.9 billion mile (7.9 billion kilometer) voyage that includes 14 more loops around the sun. MESSENGER will fly past Venus twice and Mercury three times before moving into orbit.

The Venus flybys in October 2006 and June 2007 will use the planet’s gravity to guide MESSENGER toward Mercury’s orbit. The Mercury flybys in January 2008, October 2008 and September 2009 will help MESSENGER match the planet’s speed. These events will set up the maneuver in March 2011 that starts a year-long science orbit around Mercury.

“This Earth flyby is the first of a number of critical mission milestones during MESSENGER’s circuitous journey toward Mercury orbit insertion,” said Sean C. Solomon, the mission’s principal investigator from the Carnegie Institution of Washington. “Not only did it help the spacecraft sharpen its aim toward our next maneuver, it presented a special opportunity to calibrate several of our science instruments.”

MESSENGER’s main camera snapped several approach shots of Earth and the moon during the past week. Today the camera is taking a series of color images, beginning with South America and continuing for one full Earth rotation. Science team members will string the images into a video documenting MESSENGER’s departure.

On Earth approach, the craft’s atmospheric and surface composition spectrometer made several scans of the moon in conjunction with the camera observations. In addition, the particle and magnetic field instruments spent several hours measuring Earth’s magnetosphere. The science team will download the data and images through NASA’s Deep Space Network over the next several weeks, continuing assessment of the instruments’ performance.

MESSENGER will conduct the first orbital study of Mercury, the least explored of the terrestrial planets that include Venus, Earth and Mars. During one Earth year (four Mercury years), MESSENGER will provide the first images of the entire planet. It will collect detailed information about the composition and structure of Mercury’s crust, its geologic history, nature of its atmosphere and magnetosphere, makeup of its core and polar materials.

MESSENGER, short for MErcury Surface, Space ENvironment, GEochemistry, and Ranging, is the seventh mission in NASA’s Discovery Program of lower-cost scientifically focused exploration projects. APL designed, built and operates the spacecraft and manages the mission for NASA’s Science Mission Directorate.

For information about the spacecraft and mission visit:

http://messenger.jhuapl.edu