The hydrogen isotopic composition (δD) of leaf wax long-chain n-alkanes from lacustrine sediments has been widely applied to reconstruct terrestrial paleoclimatic and paleohydrological changes. However, few studies have addressed whether the aquatic-derived n-alkanes can affect the δD values of lake sedimentary long-chain n-alkanes, which are usually regarded as a recorder of the terrestrial hydrological signals. Therefore, the heterogeneous origins and relative contributions of these lipids provide challenges for the interpretation of the increasing dataset as an environment and climatic proxy.