Solution of Ordinary Differential Equations in Gradient-Based Multidisciplinary Design Optimization

Abstract: A gradient-based approach to multidisciplinary design optimization enables efficient scalability to large numbers of design variables. However, the need for derivatives causes difficulties when integrating ordinary differential equations (ODEs) in models. To simplify this, we propose the use of the general linear methods framework, which unifies all Runge-Kutta and linear multistep methods. This approach enables rapid implementation of integration methods without the need to differentiate eac…