Optical coherence tomography (OCT) is a light-based imaging technique currently used in clinical diagnostics to examine organs in vivo. The technique uses interferometry; in which light reflected from an examined object combines with reference light that does not encounter the object to generate interference patterns that form 2-D and 3-D OCT images. It is possible to use longer wavelengths of light in the imaging technique for deeper penetration in light scattering materials. Such features offer possibilities for OCT in non-destructive testing (NDT) of samples, and improved non-invasive biomedical imaging. In a recent study, Niels M. Israelsen and co-workers at the Technical University of Denmark, together with collaborators in Austria and the U.K., developed a new method to overcome the technical challenges of OCT imaging.