Grain boundaries, which consist of periodic arrangement of structural units and are generally recognized as a two-dimensional “phase,” can exhibit novel properties that do not exist in the intrinsic bulk crystal. The altered continuity of atomic bonding at grain boundaries causes the local chemical environment to dramatically change at a few unit cells, subsequently alter local electrical activity, magnetic order or other physical properties. The effects of grain boundary on properties is even more significant in complex oxides due to the substantial interactions between lattices and other order parameters. Therefore, such an inhomogeneity of materials with grain boundaries may dominate the entire response in nanoscale devices and has garnered particular interest in designing novel functional devices.
Click here for original story, A new strategy to create 2-D magnetic order
Source: Phys.org