Life on earth is based on recurring 24-hour environmental cycles that are genetically encoded as molecular clocks active in all mammalian organs. Communication between these clocks can control circadian homeostasis. Temporal coordination of metabolism can then mediate inter-tissue communication. In a new report now published in Science Advances, Paul Petrus and a team of interdisciplinary researchers in epigenetics and metabolism, health sciences, computer science and biomedicine at the University of California, Irvine, U.S., and the Pompeu Fabra University in Barcelona, Spain, characterized the process to which clocks across diverse organs controlled systematic metabolic rhythms. This trajectory is a research area that hitherto remains to be explored. The team studied the metabolome of serum from mice with tissue-specific expression of the clock gene Bmal1. The experimental outcomes indicated that the central clock regulated the metabolic rhythms via behavior. The findings highlighted the circadian connection between tissues to emphasize the significance of the central clock governing the signals.
Click here for original story, The central core clock machinery drives the majority of metabolic rhythms
Source: Phys.org